Difference between revisions of "Digamma"

From specialfunctionswiki
Jump to: navigation, search
(See Also)
Line 17: Line 17:
 
=See Also=
 
=See Also=
 
[[Gamma function]] <br />
 
[[Gamma function]] <br />
[[Polygamma function]]<br />
+
[[Polygamma]]<br />
[[Trigamma function]] <br />
+
[[Trigamma]] <br />
  
 
=References=
 
=References=

Revision as of 03:11, 21 December 2016

The digamma function $\psi \colon \mathbb{C} \setminus \{0,-1,-2,\ldots\} \rightarrow \mathbb{C}$ is defined by $$\psi(z) = \dfrac{\mathrm{d}}{\mathrm{d}z} \log \Gamma(z) = \dfrac{\Gamma'(z)}{\Gamma(z)}.$$

Properties

Partial derivative of beta function
Digamma at 1
Digamma functional equation
Digamma at n+1

See Also

Gamma function
Polygamma
Trigamma

References