Difference between revisions of "Arcsinh"

From specialfunctionswiki
Jump to: navigation, search
Line 6: Line 6:
 
<gallery>
 
<gallery>
 
File:Arcsinhplot.png|Plot of $\mathrm{arcsinh}$ on $[-10,10]$.
 
File:Arcsinhplot.png|Plot of $\mathrm{arcsinh}$ on $[-10,10]$.
File:Complex ArcSinh.jpg|[[Domain coloring]] of [[analytic continuation]] of $\mathrm{arcsinh}$.
+
File:Complexarcsinhplot.png|[[Domain coloring]] of of $\mathrm{arcsinh}$.
 
</gallery>
 
</gallery>
 
</div>
 
</div>

Revision as of 23:53, 15 September 2016

The inverse hyperbolic sine function $\mathrm{arcsinh}$ is function is the inverse function of the hyperbolic sine function. It may be defined by $$\mathrm{arcsinh}(z)=\log \left(z + \sqrt{1+z^2} \right).$$

Properties

Derivative of arcsinh

See Also

Arcsin
Sine
Sinh

References

Abramowitz&Stegun

Inverse hyperbolic trigonometric functions