Difference between revisions of "Arccosh"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 +
The inverse hyperbolic cosine function $\mathrm{arccosh}$ is the [[inverse function]] of the [[hyperbolic cosine]] function. It may be defined by
 +
$$\mathrm{arccosh}(z)=\log \left(z + \sqrt{1+z^2} \right).$$
 +
 
<div align="center">
 
<div align="center">
 
<gallery>
 
<gallery>

Revision as of 00:16, 16 September 2016

The inverse hyperbolic cosine function $\mathrm{arccosh}$ is the inverse function of the hyperbolic cosine function. It may be defined by $$\mathrm{arccosh}(z)=\log \left(z + \sqrt{1+z^2} \right).$$

Inverse hyperbolic trigonometric functions