Difference between revisions of "Arcsin"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
__NOTOC__
 
__NOTOC__
 
The function $\mathrm{arcsin} \colon \mathbb{C} \setminus \left\{ (-\infty,-1) \bigcup (1,\infty) \right\} \rightarrow \mathbb{C}$ is defined by
 
The function $\mathrm{arcsin} \colon \mathbb{C} \setminus \left\{ (-\infty,-1) \bigcup (1,\infty) \right\} \rightarrow \mathbb{C}$ is defined by
$$\rm{arcsin}=-i \log \left( iz + \sqrt{1-z^2} \right),$$
+
$$\rm{arcsin}(z)=-i \log \left( iz + \sqrt{1-z^2} \right),$$
 
where $i$ denotes the [[imaginary number]] and $\log$ denotes the [[logarithm]]. <br />
 
where $i$ denotes the [[imaginary number]] and $\log$ denotes the [[logarithm]]. <br />
  

Revision as of 19:56, 22 November 2016

The function $\mathrm{arcsin} \colon \mathbb{C} \setminus \left\{ (-\infty,-1) \bigcup (1,\infty) \right\} \rightarrow \mathbb{C}$ is defined by $$\rm{arcsin}(z)=-i \log \left( iz + \sqrt{1-z^2} \right),$$ where $i$ denotes the imaginary number and $\log$ denotes the logarithm.

Properties

Derivative of arcsin
Antiderivative of arcsin
Relationship between arcsin and arccsc
2F1(1/2,1/2;3/2;z^2)=arcsin(z)/z

Videos

Inverse Trig Functions: Arcsin
Integrate x*arcsin(x)
What is arcsin(x)?
What is the inverse of arcsin(ln(x))?

See Also

Sine
Sinh
Arcsinh

References

On the function arc sin(x+iy)-Cayley

Inverse trigonometric functions