Difference between revisions of "Q-exponential E sub q"
From specialfunctionswiki
(→References) |
(→References) |
||
Line 14: | Line 14: | ||
=References= | =References= | ||
+ | * {{PaperReference|q-exponential and q-gamma functions. I. q-exponential functions|1994|D.S. McAnally|prev=findme|next=q-Factorial}} $(3.2)$ (calls $E_q$ $\exp_q$) | ||
* {{BookReference|A Comprehensive Treatment of q-Calculus|2012|Thomas Ernst|prev=findme|next=Meromorphic continuation of q-exponential E sub q}}: ($6.150$) | * {{BookReference|A Comprehensive Treatment of q-Calculus|2012|Thomas Ernst|prev=findme|next=Meromorphic continuation of q-exponential E sub q}}: ($6.150$) | ||
+ | |||
[[Category:SpecialFunction]] | [[Category:SpecialFunction]] |
Revision as of 19:49, 18 December 2016
If $|q|>1$ or the pair $0 < |q| <1$ and $|z| < \dfrac{1}{|1-q|}$ hold, then the $q$-exponential $E_q$ is $$E_q(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^k}{[k]_q!},$$ where $[k]_q!$ denotes the $q$-factorial.
Properties
Meromorphic continuation of q-exponential E sub q
Q-difference equation for q-exponential E sub q
See also
q-Cos
q-exponential E sub 1/q
q-Sin
References
- D.S. McAnally: q-exponential and q-gamma functions. I. q-exponential functions (1994)... (previous)... (next) $(3.2)$ (calls $E_q$ $\exp_q$)
- 2012: Thomas Ernst: A Comprehensive Treatment of q-Calculus ... (previous) ... (next): ($6.150$)