Difference between revisions of "Q-number"
From specialfunctionswiki
Line 12: | Line 12: | ||
=References= | =References= | ||
− | * {{BookReference|A Comprehensive Treatment of q-Calculus|2012|Thomas Ernst|prev=findme|next=q-number when a=n is a natural number}}: ($6.1$) (calls $[a]_q$ $\{a\}_q) | + | * {{BookReference|A Comprehensive Treatment of q-Calculus|2012|Thomas Ernst|prev=findme|next=q-number when a=n is a natural number}}: ($6.1$) (calls $[a]_q$ $\{a\}_q$) |
[[Category:SpecialFunction]] | [[Category:SpecialFunction]] |
Revision as of 08:06, 18 December 2016
Let $a \in \mathbb{C}$ and $q \in \mathbb{C} \setminus \{0,1\}$. Define the $q$-number $[a]_q$ by $$[a]_q=\dfrac{1-q^a}{1-q}.$$
Properties
$q$-number when $a=n$ is a natural number
$q$-number of a negative
1/q-number as a q-number
See Also
References
- 2012: Thomas Ernst: A Comprehensive Treatment of q-Calculus ... (previous) ... (next): ($6.1$) (calls $[a]_q$ $\{a\}_q$)