Difference between revisions of "Q-derivative"

From specialfunctionswiki
Jump to: navigation, search
Line 2: Line 2:
 
$$\dfrac{\mathrm{d}_qf}{\mathrm{d}_qz}=\left\{ \begin{array}{ll}
 
$$\dfrac{\mathrm{d}_qf}{\mathrm{d}_qz}=\left\{ \begin{array}{ll}
 
\dfrac{f(qz)-f(z)}{qz-z}, & \quad z \neq 0 \\
 
\dfrac{f(qz)-f(z)}{qz-z}, & \quad z \neq 0 \\
f'(0), & \quad z=0.
+
f'(0), & \quad z=0,
 
\end{array} \right.$$
 
\end{array} \right.$$
 +
where $f'(0)$ denotes the [[derivative]].
  
 
=Properties=
 
=Properties=

Revision as of 19:25, 18 December 2016

The $q$-derivative is defined by $$\dfrac{\mathrm{d}_qf}{\mathrm{d}_qz}=\left\{ \begin{array}{ll} \dfrac{f(qz)-f(z)}{qz-z}, & \quad z \neq 0 \\ f'(0), & \quad z=0, \end{array} \right.$$ where $f'(0)$ denotes the derivative.

Properties

Relationship between q-derivative and derivative
q-derivative power rule

References