Difference between revisions of "Q-factorial"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
__NOTOC__
 
__NOTOC__
 
The $q$-factorial is defined for a non-negative integer $k$ by
 
The $q$-factorial is defined for a non-negative integer $k$ by
$$[n]_q! = \displaystyle\prod_{k=1}^n [k]_q=[1]_q [2]_q \ldots [n]_q,$$
+
$$[n]_q! = \displaystyle\prod_{k=1}^n [k]_q= \left( \dfrac{1-q}{1-q} \right) \left( \dfrac{1-q^2}{1-q} \right) \ldots \left( \dfrac{1-q^n}{1-q} \right),$$
 
where $[k]_q$ denotes a [[q-number|$q$-number]].
 
where $[k]_q$ denotes a [[q-number|$q$-number]].
  
Line 10: Line 10:
 
=See Also=
 
=See Also=
 
[[q-number|$q$-number]]<br />
 
[[q-number|$q$-number]]<br />
 +
[[q-Pochhammer|$q$-Pochhammer]]<br />
  
 
=References=
 
=References=

Revision as of 21:10, 18 December 2016

The $q$-factorial is defined for a non-negative integer $k$ by $$[n]_q! = \displaystyle\prod_{k=1}^n [k]_q= \left( \dfrac{1-q}{1-q} \right) \left( \dfrac{1-q^2}{1-q} \right) \ldots \left( \dfrac{1-q^n}{1-q} \right),$$ where $[k]_q$ denotes a $q$-number.

Properties

Q-derivative power rule
Relationship between q-factorial and q-pochhammer

See Also

$q$-number
$q$-Pochhammer

References

$q$-calculus