Difference between revisions of "Sievert integral"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
__NOTOC__
 
__NOTOC__
The Sievert integral $S(z)$ is defined by
+
The Sievert integral $S$ is defined by
$$S(z,\theta)=\int_0^{\theta} e^{-z \sec \phi} \mathrm{d} \phi,$$
+
$$S(x,\theta)=\int_0^{\theta} e^{-x \sec \phi} \mathrm{d} \phi,$$
 
where $e^{*}$ denotes the [[exponential]] and $\sec$ denotes [[secant]].
 
where $e^{*}$ denotes the [[exponential]] and $\sec$ denotes [[secant]].
  

Revision as of 02:07, 21 December 2016

The Sievert integral $S$ is defined by $$S(x,\theta)=\int_0^{\theta} e^{-x \sec \phi} \mathrm{d} \phi,$$ where $e^{*}$ denotes the exponential and $\sec$ denotes secant.

Properties

Asymptotic behavior of Sievert integral
Relationship between Sievert integral and exponential integral E
Relationship between Sievert integral and Bessel K

External links

[1]

References