Difference between revisions of "Q-shifted factorial"
From specialfunctionswiki
Line 1: | Line 1: | ||
− | The $q$-shifted factorial $(a;q)_n$ is defined for $a,q \in \mathbb{C}$ by $(a;q)_0=1$ and for $n=1,2,3,\ldots$, by | + | The $q$-shifted factorial $(a;q)_n$ is defined for $a,q \in \mathbb{C}$ by $(a;q)_0=1$ and for $n=1,2,3,\ldots$ or $n=\infty$, by |
$$(a;q)_n=\displaystyle\prod_{k=0}^{n-1} 1-aq^{k}=(1-a)(1-aq)(1-aq^2)\ldots(1-aq^{n-1}).$$ | $$(a;q)_n=\displaystyle\prod_{k=0}^{n-1} 1-aq^{k}=(1-a)(1-aq)(1-aq^2)\ldots(1-aq^{n-1}).$$ | ||
Revision as of 00:13, 30 May 2017
The $q$-shifted factorial $(a;q)_n$ is defined for $a,q \in \mathbb{C}$ by $(a;q)_0=1$ and for $n=1,2,3,\ldots$ or $n=\infty$, by $$(a;q)_n=\displaystyle\prod_{k=0}^{n-1} 1-aq^{k}=(1-a)(1-aq)(1-aq^2)\ldots(1-aq^{n-1}).$$
Properties
References
- Tom H. Koornwinder: q-Special functions, a tutorial (1994)... (previous)... (next)
- 1999: George E. Andrews, Richard Askey and Ranjan Roy: Special Functions ... (previous) ... (next) $(10.2.1)$ (does not specifically say "$q$-shifted factorial")