Difference between revisions of "Bessel J in terms of Bessel-Clifford"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$J_n(z) = \left( \dfrac{z}{2} \right)^n \mathcal{C}_n\left( - \dfrac{z^2}{4} \right),$$ where $J_n$ denotes Bessel J and $\mathca...")
 
Line 2: Line 2:
 
The following formula holds:
 
The following formula holds:
 
$$J_n(z) = \left( \dfrac{z}{2} \right)^n \mathcal{C}_n\left( - \dfrac{z^2}{4} \right),$$
 
$$J_n(z) = \left( \dfrac{z}{2} \right)^n \mathcal{C}_n\left( - \dfrac{z^2}{4} \right),$$
where $J_n$ denotes [[Bessel J]] and $\mathcal{C}_n$ denotes [[Bessel-Clifford]].
+
where $J_n$ denotes [[Bessel J]] and $\mathcal{C}_n$ denotes [[Bessel-Clifford function]].
  
 
==Proof==
 
==Proof==

Revision as of 01:05, 23 December 2016

Theorem

The following formula holds: $$J_n(z) = \left( \dfrac{z}{2} \right)^n \mathcal{C}_n\left( - \dfrac{z^2}{4} \right),$$ where $J_n$ denotes Bessel J and $\mathcal{C}_n$ denotes Bessel-Clifford function.

Proof

References