Difference between revisions of "Dirichlet function"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The Dirichlet function $D \colon \mathbb{R} \rightarrow \{0,1\}$ is defined by $$D(x) = \left\{ \begin{array}{ll} 1, & y \in \mathbb{Q} \\ 0, & y \in \mathbb{R} \setminus \mat...")
 
 
Line 7: Line 7:
  
 
=Properties=
 
=Properties=
 +
[[Dirichlet function is nowhere continuous]]<br />
 +
 +
=See also=
 +
[[Thomae function]]<br />
  
 
=References=
 
=References=
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Latest revision as of 07:29, 10 January 2017

The Dirichlet function $D \colon \mathbb{R} \rightarrow \{0,1\}$ is defined by $$D(x) = \left\{ \begin{array}{ll} 1, & y \in \mathbb{Q} \\ 0, & y \in \mathbb{R} \setminus \mathbb{Q}, \end{array} \right.$$ where $\mathbb{Q}$ denotes the set of rational numbers and $\mathbb{R} \setminus \mathbb{Q}$ denotes the set of irrational number.

Properties

Dirichlet function is nowhere continuous

See also

Thomae function

References