Difference between revisions of "Riemann zeta at even integers"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds for even integers $n$ and $m \in \{1,2,3,\ldots\}$: $$\zeta(n)= \left\{ \begin{array}{ll} 0 &, \quad n=-2m, \\ -\dfrac{1}{2} &, \quad n...")
 
(References)
 
Line 11: Line 11:
  
 
==References==
 
==References==
* {{BookReference|The Zeta-Function of Riemann|1930|Edward Charles Titchmarsh|prev=Riemann zeta as contour integral|next=findme}}: § Introduction $(5)$
+
* {{BookReference|The Zeta-Function of Riemann|1930|Edward Charles Titchmarsh|prev=Riemann zeta as contour integral|next=Functional equation for Riemann zeta}}: § Introduction $(5)$
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 23:57, 17 March 2017

Theorem

The following formula holds for even integers $n$ and $m \in \{1,2,3,\ldots\}$: $$\zeta(n)= \left\{ \begin{array}{ll} 0 &, \quad n=-2m, \\ -\dfrac{1}{2} &, \quad n=0 \\ \dfrac{(-1)^m B_m}{2m} &, \quad n=2m, \end{array} \right.$$ where $\zeta$ denotes Riemann zeta and $B_m$ denotes Bernoulli numbers.

Proof

References