Difference between revisions of "Riemann xi"
From specialfunctionswiki
Line 1: | Line 1: | ||
The Riemann $\xi$ function is defined by the formula | The Riemann $\xi$ function is defined by the formula | ||
$$\xi(z)=\dfrac{z}{2}(z-1)\pi^{-\frac{z}{2}}\Gamma\left(\dfrac{z}{2}\right)\zeta(z),$$ | $$\xi(z)=\dfrac{z}{2}(z-1)\pi^{-\frac{z}{2}}\Gamma\left(\dfrac{z}{2}\right)\zeta(z),$$ | ||
− | where $\Gamma$ denotes | + | where $\pi$ denotes [[pi]], $\Gamma$ denotes [[gamma]], and $\zeta$ denotes the [[Riemann zeta function]]. |
<div align="center"> | <div align="center"> |
Revision as of 15:31, 18 March 2017
The Riemann $\xi$ function is defined by the formula $$\xi(z)=\dfrac{z}{2}(z-1)\pi^{-\frac{z}{2}}\Gamma\left(\dfrac{z}{2}\right)\zeta(z),$$ where $\pi$ denotes pi, $\Gamma$ denotes gamma, and $\zeta$ denotes the Riemann zeta function.
Properties
Functional equation for Riemann xi
References
- 1930: Edward Charles Titchmarsh: The Zeta-Function of Riemann ... (previous) ... (next): § Introduction $(7)$