Difference between revisions of "Pochhammer symbol with non-negative integer subscript"
From specialfunctionswiki
Line 10: | Line 10: | ||
==References== | ==References== | ||
− | * {{BookReference|Higher Transcendental Functions Volume I|1953| | + | * {{BookReference|Higher Transcendental Functions Volume I|1953|Arthur Erdélyi|author2=Wilhelm Magnus|author3=Fritz Oberhettinger|author4=Francesco G. Tricomi|prev=Pochhammer|next=findme}}: $4.1 (2)$ |
[[Category:Theorem]] | [[Category:Theorem]] | ||
[[Category:Unproven]] | [[Category:Unproven]] |
Latest revision as of 23:25, 3 March 2018
Theorem
The following formula holds: $$(a)_n = \left\{ \begin{array}{ll} 1, & \quad n=0 \\ a(a+1)\ldots(a+n-1), & \quad n=1,2,3,\ldots, \end{array} \right.$$ where $(a)_n$ denotes the Pochhammer symbol.
Proof
References
- 1953: Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger and Francesco G. Tricomi: Higher Transcendental Functions Volume I ... (previous) ... (next): $4.1 (2)$