Difference between revisions of "1/B(n,m)=m((n+m-1) choose (n-1))"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$\dfrac{1}{B(n,m)} = m {{n+m-1} \choose {n-1}},$$ where $B$ denotes the beta function and ${{n+m-1} \choose {n-1}}$ denotes a b...")
 
 
Line 7: Line 7:
  
 
==References==
 
==References==
* {{BookReference|Higher Transcendental Functions Volume I|1953|Harry Bateman|prev=B(x,y)B(x+y,z)B(x+y+z,u)=Gamma(x)Gamma(y)Gamma(z)Gamma(u)/Gamma(x+y+z+u)|next=1/B(n,m)=n((n+m-1) choose (m-1))}}: $\S 1.5 (9)$
+
* {{BookReference|Higher Transcendental Functions Volume I|1953|Arthur Erdélyi|author2=Wilhelm Magnus|author3=Fritz Oberhettinger|author4=Francesco G. Tricomi|prev=B(x,y)B(x+y,z)B(x+y+z,u)=Gamma(x)Gamma(y)Gamma(z)Gamma(u)/Gamma(x+y+z+u)|next=1/B(n,m)=n((n+m-1) choose (m-1))}}: $\S 1.5 (9)$
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 21:01, 3 March 2018

Theorem

The following formula holds: $$\dfrac{1}{B(n,m)} = m {{n+m-1} \choose {n-1}},$$ where $B$ denotes the beta function and ${{n+m-1} \choose {n-1}}$ denotes a binomial coefficient.

Proof

References