Difference between revisions of "Clausen cosine"
From specialfunctionswiki
Line 1: | Line 1: | ||
Let $s \in \mathbb{C}$. The Clausen cosine function $\tilde{\mathrm{Cl}}_s \colon \mathbb{C} \rightarrow \mathbb{C}$ is defined as the [[analytic continuation]] of the series | Let $s \in \mathbb{C}$. The Clausen cosine function $\tilde{\mathrm{Cl}}_s \colon \mathbb{C} \rightarrow \mathbb{C}$ is defined as the [[analytic continuation]] of the series | ||
− | $$\tilde{\mathrm{Cl}}_s(z)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\cos(kz)}{k^ | + | $$\tilde{\mathrm{Cl}}_s(z)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\cos(kz)}{k^s},$$ |
where $\cos$ denotes [[cosine]]. | where $\cos$ denotes [[cosine]]. | ||
Revision as of 01:49, 20 December 2017
Let $s \in \mathbb{C}$. The Clausen cosine function $\tilde{\mathrm{Cl}}_s \colon \mathbb{C} \rightarrow \mathbb{C}$ is defined as the analytic continuation of the series $$\tilde{\mathrm{Cl}}_s(z)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\cos(kz)}{k^s},$$ where $\cos$ denotes cosine.