Difference between revisions of "Clausen cosine"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
Let $s \in \mathbb{C}$. The Clausen cosine function $\tilde{\mathrm{Cl}}_s \colon \mathbb{C} \rightarrow \mathbb{C}$ is defined as the [[analytic continuation]] of the series
 
Let $s \in \mathbb{C}$. The Clausen cosine function $\tilde{\mathrm{Cl}}_s \colon \mathbb{C} \rightarrow \mathbb{C}$ is defined as the [[analytic continuation]] of the series
$$\tilde{\mathrm{Cl}}_s(z)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\cos(kz)}{k^z},$$
+
$$\tilde{\mathrm{Cl}}_s(z)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\cos(kz)}{k^s},$$
 
where $\cos$ denotes [[cosine]].
 
where $\cos$ denotes [[cosine]].
  

Revision as of 01:49, 20 December 2017

Let $s \in \mathbb{C}$. The Clausen cosine function $\tilde{\mathrm{Cl}}_s \colon \mathbb{C} \rightarrow \mathbb{C}$ is defined as the analytic continuation of the series $$\tilde{\mathrm{Cl}}_s(z)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\cos(kz)}{k^s},$$ where $\cos$ denotes cosine.

Properties

See also

Clausen sine

References