Difference between revisions of "Log(z)=log(10)log 10(z)"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$\log(z)=\log(10)\log_{10}(z),$$ where $\log$ denotes logarithm and $\log_{10}$ denotes logarithm base a. ==Proof== ==Refer...")
 
 
Line 7: Line 7:
  
 
==References==
 
==References==
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Log 10(z)=log 10(e)log(z)|next=findme}}: $4.1.23$
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Log 10(z)=log 10(e)log(z)|next=Taylor series of log(1+z)}}: $4.1.23$
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 19:30, 25 June 2017

Theorem

The following formula holds: $$\log(z)=\log(10)\log_{10}(z),$$ where $\log$ denotes logarithm and $\log_{10}$ denotes logarithm base a.

Proof

References