Difference between revisions of "Tanh of a sum"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$\mathrm{tanh}(z_1+z_2) = \dfrac{\tanh(z_1)+\tanh(z_2)}{1+\tanh(z_1)\tanh(z_2)},$$ where $\tanh$ denotes hyperbolic tangent....")
 
 
Line 7: Line 7:
  
 
==References==
 
==References==
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Cosh of a sum|next=findme}}: $4.5.26$
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Cosh of a sum|next=Coth of a sum}}: $4.5.26$
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 22:40, 21 October 2017

Theorem

The following formula holds: $$\mathrm{tanh}(z_1+z_2) = \dfrac{\tanh(z_1)+\tanh(z_2)}{1+\tanh(z_1)\tanh(z_2)},$$ where $\tanh$ denotes hyperbolic tangent.

Proof

References