Difference between revisions of "Tanh of a sum"
From specialfunctionswiki
(Created page with "==Theorem== The following formula holds: $$\mathrm{tanh}(z_1+z_2) = \dfrac{\tanh(z_1)+\tanh(z_2)}{1+\tanh(z_1)\tanh(z_2)},$$ where $\tanh$ denotes hyperbolic tangent....") |
|||
Line 7: | Line 7: | ||
==References== | ==References== | ||
− | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Cosh of a sum|next= | + | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Cosh of a sum|next=Coth of a sum}}: $4.5.26$ |
[[Category:Theorem]] | [[Category:Theorem]] | ||
[[Category:Unproven]] | [[Category:Unproven]] |
Latest revision as of 22:40, 21 October 2017
Theorem
The following formula holds: $$\mathrm{tanh}(z_1+z_2) = \dfrac{\tanh(z_1)+\tanh(z_2)}{1+\tanh(z_1)\tanh(z_2)},$$ where $\tanh$ denotes hyperbolic tangent.
Proof
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $4.5.26$