Difference between revisions of "Halving identity for tangent (1)"
From specialfunctionswiki
(Created page with "==Theorem== The following formula holds: $$\tanh \left( \dfrac{z}{2} \right) = \sqrt{ \dfrac{\cosh(z)-1}{2} },$$ where $\tanh$ denotes hyperbolic tangent and $\cosh$...") |
|||
Line 8: | Line 8: | ||
==References== | ==References== | ||
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Halving identity for cosh|next=findme}}: $4.5.30$ | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Halving identity for cosh|next=findme}}: $4.5.30$ | ||
− | |||
− | |||
[[Category:Theorem]] | [[Category:Theorem]] | ||
[[Category:Unproven]] | [[Category:Unproven]] |
Revision as of 22:47, 21 October 2017
Theorem
The following formula holds: $$\tanh \left( \dfrac{z}{2} \right) = \sqrt{ \dfrac{\cosh(z)-1}{2} },$$ where $\tanh$ denotes hyperbolic tangent and $\cosh$ denotes hyperbolic cosine.
Proof
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $4.5.30$