Difference between revisions of "Halving identity for tangent (3)"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$\tanh \left( \dfrac{z}{2} \right) = \dfrac{\sinh(z)}{\cosh(z)+1},$$ where $\tanh$ denotes hyperbolic tangent, $\sinh$ denot...")
 
 
Line 7: Line 7:
  
 
==References==
 
==References==
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Halving identity for tangent (2)|next=Doubling identity for sinh}}: $4.5.30$
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Halving identity for tangent (2)|next=Doubling identity for sinh (1)}}: $4.5.30$
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 22:51, 21 October 2017

Theorem

The following formula holds: $$\tanh \left( \dfrac{z}{2} \right) = \dfrac{\sinh(z)}{\cosh(z)+1},$$ where $\tanh$ denotes hyperbolic tangent, $\sinh$ denotes hyperbolic sine, and $\cosh$ denotes hyperbolic cosine.

Proof

References