Difference between revisions of "Struve function"

From specialfunctionswiki
Jump to: navigation, search
Line 4: Line 4:
 
<div align="center">
 
<div align="center">
 
<gallery>
 
<gallery>
 +
File:Struveh0plot.png|Struve $\mathbf{H}_0$.
 +
File:Struveplots.png|Various Struve functions.
 
File:Struvefunctions(abramowitzandstegun).png|Struve functions from Abramowitz&Stegun.
 
File:Struvefunctions(abramowitzandstegun).png|Struve functions from Abramowitz&Stegun.
 
</gallery>
 
</gallery>

Revision as of 00:15, 22 October 2017

The Struve functions are defined by $$\mathbf{H}_{\nu}(z)=\left(\dfrac{z}{2}\right)^{\nu+1} \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k\left(\frac{z}{2}\right)^{2k}}{\Gamma(k+\frac{3}{2})\Gamma(k+\nu+\frac{3}{2})}.$$


Properties

Relationship between Struve function and hypergeometric pFq
Relationship between Weber function 0 and Struve function 0
Relationship between Weber function 1 and Struve function 1

References

Struve functions in Abramowitz&Stegun