Difference between revisions of "Recurrence relation for Struve fuction"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$\mathbf{H}_{\nu-1}(z)+\mathbf{H}_{\nu+1}(z) = \dfrac{2\nu}{z} \mathbf{H}_{\nu}(z) + \dfrac{z^{\nu}}{2^{\nu}\sqrt{\pi}\Gamma(\nu+\fra...")
 
 
Line 7: Line 7:
  
 
==References==
 
==References==
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Integral representation of Struve function (3)|next=}}: $12.1.9$
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Integral representation of Struve function (3)|next=Recurrence relation for Struve function (2)}}: $12.1.9$
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 16:26, 4 November 2017

Theorem

The following formula holds: $$\mathbf{H}_{\nu-1}(z)+\mathbf{H}_{\nu+1}(z) = \dfrac{2\nu}{z} \mathbf{H}_{\nu}(z) + \dfrac{z^{\nu}}{2^{\nu}\sqrt{\pi}\Gamma(\nu+\frac{3}{2})},$$ where $\mathbf{H}$ denotes the Struve function, $\pi$ denotes pi, and $\Gamma$ denotes the gamma function.

Proof

References