Difference between revisions of "Derivative of Struve H0"
From specialfunctionswiki
(Created page with "==Theorem== The following formula holds: $$\mathbf{H}_0'(z) = \dfrac{2}{\pi} - \mathbf{H}_1(z),$$ where $\mathbf{H}$ denotes the Struve function. ==Proof== ==References=...") |
|||
Line 7: | Line 7: | ||
==References== | ==References== | ||
− | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Recurrence relation for Struve function (2)|next= | + | * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Recurrence relation for Struve function (2)|next=D/dz(z^(-nu)H (nu))=1/(sqrt(pi)2^(nu)Gamma(nu+3/2))-z^(-nu)H (nu+1)}}: $12.1.11$ |
[[Category:Theorem]] | [[Category:Theorem]] | ||
[[Category:Unproven]] | [[Category:Unproven]] |
Revision as of 00:47, 21 December 2017
Theorem
The following formula holds: $$\mathbf{H}_0'(z) = \dfrac{2}{\pi} - \mathbf{H}_1(z),$$ where $\mathbf{H}$ denotes the Struve function.
Proof
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $12.1.11$