Difference between revisions of "Derivative of Struve H0"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$\mathbf{H}_0'(z) = \dfrac{2}{\pi} - \mathbf{H}_1(z),$$ where $\mathbf{H}$ denotes the Struve function. ==Proof== ==References=...")
 
Line 7: Line 7:
  
 
==References==
 
==References==
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Recurrence relation for Struve function (2)|next=Derivative of power function times Struve function}}: $12.1.11$
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Recurrence relation for Struve function (2)|next=D/dz(z^(-nu)H (nu))=1/(sqrt(pi)2^(nu)Gamma(nu+3/2))-z^(-nu)H (nu+1)}}: $12.1.11$
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Revision as of 00:47, 21 December 2017

Theorem

The following formula holds: $$\mathbf{H}_0'(z) = \dfrac{2}{\pi} - \mathbf{H}_1(z),$$ where $\mathbf{H}$ denotes the Struve function.

Proof

References