Difference between revisions of "Dirichlet eta"
From specialfunctionswiki
(Created page with "Let $\mathrm{Re} \hspace{2pt} z > 0$, then define $$\eta(z) = \displaystyle\sum_{n=1}^{\infty} \dfrac{(-1)^{n-1}}{n^s}.$$ This series is clearly the Riemann zeta function...") |
|||
Line 2: | Line 2: | ||
$$\eta(z) = \displaystyle\sum_{n=1}^{\infty} \dfrac{(-1)^{n-1}}{n^s}.$$ | $$\eta(z) = \displaystyle\sum_{n=1}^{\infty} \dfrac{(-1)^{n-1}}{n^s}.$$ | ||
This series is clearly the [[Riemann zeta function]] with alternating terms. | This series is clearly the [[Riemann zeta function]] with alternating terms. | ||
+ | |||
+ | [[File:Complex Dirichlet eta function.jpg|500px]] |
Revision as of 05:37, 19 October 2014
Let $\mathrm{Re} \hspace{2pt} z > 0$, then define $$\eta(z) = \displaystyle\sum_{n=1}^{\infty} \dfrac{(-1)^{n-1}}{n^s}.$$ This series is clearly the Riemann zeta function with alternating terms.