Difference between revisions of "Mittag-Leffler"
From specialfunctionswiki
Line 6: | Line 6: | ||
=References= | =References= | ||
+ | * {{PaperReference|Mittag-Leffler Functions and Their Applications|2011|H.J. Haubold|author2=A.M. Mathai|author3=R.K. Saxena|next=findme}}: | ||
[[Category:SpecialFunction]] | [[Category:SpecialFunction]] |
Revision as of 21:09, 2 January 2018
The Mittag-Leffler function $E_{\alpha, \beta}$ is defined for $z, \alpha, \beta \in \mathbb{C}$ with $\mathrm{Re}(\alpha), \mathrm{Re}(\beta) > 0$ by the series $$E_{\alpha, \beta}(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^k}{\Gamma(\alpha k + \beta)},$$ where $\Gamma$ denotes the gamma function.