Difference between revisions of "Q-zeta"
From specialfunctionswiki
(Created page with "The $q$-zeta function $\zeta_q \colon \mathbb{C} \times (0,1] \rightarrow \mathbb{C}$ by $$\zeta_q(z,x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{q^{-k}}{(q^{-k}[k]+x)^z},$$ whe...") |
|||
Line 7: | Line 7: | ||
=References= | =References= | ||
+ | * {{PaperReference|q-Dedekind type sums related to q-zeta function and basic L-series|2006|Yilmaz Simsek|prev=findme|next=findme}} | ||
[[Category:SpecialFunction]] | [[Category:SpecialFunction]] |
Revision as of 17:44, 11 February 2018
The $q$-zeta function $\zeta_q \colon \mathbb{C} \times (0,1] \rightarrow \mathbb{C}$ by $$\zeta_q(z,x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{q^{-k}}{(q^{-k}[k]+x)^z},$$ where $[k]$ denotes a $q$-number.