Difference between revisions of "Normal cdf"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The normal cumulative distribution function $F \colon \mathbb{R} \rightarrow \mathbb{R}$ is defined for $\mu \in \mathbb{R}$ and $\sigma^2 >0$ by $$F(x) = \dfrac{1}{2} \le...")
 
 
Line 1: Line 1:
 
The normal [[cumulative distribution function]] $F \colon \mathbb{R} \rightarrow \mathbb{R}$ is defined for $\mu \in \mathbb{R}$ and $\sigma^2 >0$ by
 
The normal [[cumulative distribution function]] $F \colon \mathbb{R} \rightarrow \mathbb{R}$ is defined for $\mu \in \mathbb{R}$ and $\sigma^2 >0$ by
$$F(x) = \dfrac{1}{2} \left[ 1 + \erf \left( \dfrac{x-\mu}{\sigma \sqrt{2}} \right) \right],$$
+
$$F(x) = \dfrac{1}{2} \left[ 1 + \mathrm{erf} \left( \dfrac{x-\mu}{\sigma \sqrt{2}} \right) \right],$$
where $\erf$ denotes the [[error]] function and $\exp$ denotes the [[exponential]] function.
+
where $\mathrm{erf}$ denotes the [[error]] function and $\exp$ denotes the [[exponential]] function.
  
 
=Properties=
 
=Properties=

Latest revision as of 03:26, 12 March 2018

The normal cumulative distribution function $F \colon \mathbb{R} \rightarrow \mathbb{R}$ is defined for $\mu \in \mathbb{R}$ and $\sigma^2 >0$ by $$F(x) = \dfrac{1}{2} \left[ 1 + \mathrm{erf} \left( \dfrac{x-\mu}{\sigma \sqrt{2}} \right) \right],$$ where $\mathrm{erf}$ denotes the error function and $\exp$ denotes the exponential function.

Properties

See also

Normal pdf

References