Difference between revisions of "L n(x)=(e^x/n!)d^n/dx^n(x^n e^(-x))"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$L_n(x) = \dfrac{e^x}{n!} \dfrac{d^n}{dx^n} (x^n e^{-x}),$$ where $L_n$ denotes Laguerre L and $e^x$ denotes the exponential...")
 
Line 1: Line 1:
 
==Theorem==
 
==Theorem==
 
The following formula holds:
 
The following formula holds:
$$L_n(x) = \dfrac{e^x}{n!} \dfrac{d^n}{dx^n} (x^n e^{-x}),$$
+
$$L_n(x) = \dfrac{e^x}{n!} \dfrac{\mathrm{d}^n}{\mathrm{d}x^n} (x^n e^{-x}),$$
 
where $L_n$ denotes [[Laguerre L]] and $e^x$ denotes the [[exponential]] function.
 
where $L_n$ denotes [[Laguerre L]] and $e^x$ denotes the [[exponential]] function.
  

Revision as of 14:14, 15 March 2018

Theorem

The following formula holds: $$L_n(x) = \dfrac{e^x}{n!} \dfrac{\mathrm{d}^n}{\mathrm{d}x^n} (x^n e^{-x}),$$ where $L_n$ denotes Laguerre L and $e^x$ denotes the exponential function.

Proof

References