Difference between revisions of "Q-factorial"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The $q$-Factorial is defined for a non-negative integer $k$ by $$[k]_q!=1(1+q)(1+q+q^2)\ldots(1+q+\ldots+q^{k-1})=\dfrac{(q;q)_k}{(1-q)^k},$$ where $(q;q)_k$ is the q-Pochha...")
 
Line 1: Line 1:
 
The $q$-Factorial is defined for a non-negative integer $k$ by
 
The $q$-Factorial is defined for a non-negative integer $k$ by
 
$$[k]_q!=1(1+q)(1+q+q^2)\ldots(1+q+\ldots+q^{k-1})=\dfrac{(q;q)_k}{(1-q)^k},$$
 
$$[k]_q!=1(1+q)(1+q+q^2)\ldots(1+q+\ldots+q^{k-1})=\dfrac{(q;q)_k}{(1-q)^k},$$
where $(q;q)_k$ is the [[q-Pochhammer]] symbol.
+
where $(q;q)_k$ is the [[q-Pochhammer symbol]].

Revision as of 18:17, 27 July 2014

The $q$-Factorial is defined for a non-negative integer $k$ by $$[k]_q!=1(1+q)(1+q+q^2)\ldots(1+q+\ldots+q^{k-1})=\dfrac{(q;q)_k}{(1-q)^k},$$ where $(q;q)_k$ is the q-Pochhammer symbol.