Difference between revisions of "Exponential integral Ei"

From specialfunctionswiki
Jump to: navigation, search
(References)
 
Line 1: Line 1:
 
The exponential integral $\mathrm{Ei}$ is defined for $x>0$ by
 
The exponential integral $\mathrm{Ei}$ is defined for $x>0$ by
 
$$\mathrm{Ei}(x) = \mathrm{PV}\int_{-\infty}^x \dfrac{e^t}{t} \mathrm{d}t,$$
 
$$\mathrm{Ei}(x) = \mathrm{PV}\int_{-\infty}^x \dfrac{e^t}{t} \mathrm{d}t,$$
where $\mathrm{PV}$ denotes the [[Cauchy principal value]].
+
where $\mathrm{PV}$ denotes the [[Cauchy principal value]] and $e^t$ denotes the [[exponential]].
  
  

Latest revision as of 00:48, 24 March 2018

The exponential integral $\mathrm{Ei}$ is defined for $x>0$ by $$\mathrm{Ei}(x) = \mathrm{PV}\int_{-\infty}^x \dfrac{e^t}{t} \mathrm{d}t,$$ where $\mathrm{PV}$ denotes the Cauchy principal value and $e^t$ denotes the exponential.


Properties

Ei(-x)=-Integral from -x to infinity of e^(-t)/t dt
Relationship between logarithmic integral and exponential integral
Exponential integral Ei series
Relationship between exponential integral Ei, cosine integral, and sine integral

See Also

Exponential integral E

References

$\ast$-integral functions