Difference between revisions of "Airy Bi"

From specialfunctionswiki
Jump to: navigation, search
Line 6: Line 6:
 
and
 
and
 
$$\mathrm{Bi}(x) = \dfrac{1}{\pi} \displaystyle\int_0^{\infty} \left[ e^{-\frac{t^3}{3} + xt} + \sin \left( \dfrac{t^3}{3}+xt \right) \right] dt.$$
 
$$\mathrm{Bi}(x) = \dfrac{1}{\pi} \displaystyle\int_0^{\infty} \left[ e^{-\frac{t^3}{3} + xt} + \sin \left( \dfrac{t^3}{3}+xt \right) \right] dt.$$
 +
 +
[[File:Airyai.png|500px]]
 +
 +
[[File:Airybi.png|500px]]

Revision as of 15:03, 14 October 2014

The Airy functions $\mathrm{Ai}$ and $\mathrm{Bi}$ solve the differential equation $$y - xy = 0.$$

It can be shown that $$\mathrm{Ai}(x) = \dfrac{1}{\pi} \displaystyle\int_0^{\infty} \cos \left( \dfrac{t^3}{3} + xt \right) dt$$ and $$\mathrm{Bi}(x) = \dfrac{1}{\pi} \displaystyle\int_0^{\infty} \left[ e^{-\frac{t^3}{3} + xt} + \sin \left( \dfrac{t^3}{3}+xt \right) \right] dt.$$

500px

500px