Difference between revisions of "Hermite (probabilist)"
From specialfunctionswiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Theorem:</strong> The Hermite polynomials $H_n$ satisfy the Rodrigues' formula $$H_n(t) = (-1)...") |
|||
Line 1: | Line 1: | ||
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | <div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | ||
− | <strong>Theorem:</strong> The Hermite polynomials $H_n$ satisfy the Rodrigues' formula | + | <strong>Theorem:</strong> The Hermite polynomials $H_n$ satisfy the [[Rodrigues' formula]] |
$$H_n(t) = (-1)^ne^{x^2}\dfrac{d^n}{dx^n}e^{-x^2}.$$ | $$H_n(t) = (-1)^ne^{x^2}\dfrac{d^n}{dx^n}e^{-x^2}.$$ | ||
<div class="mw-collapsible-content"> | <div class="mw-collapsible-content"> |
Revision as of 01:30, 14 September 2014
Theorem: The Hermite polynomials $H_n$ satisfy the Rodrigues' formula $$H_n(t) = (-1)^ne^{x^2}\dfrac{d^n}{dx^n}e^{-x^2}.$$
Proof: proof goes here █