Difference between revisions of "Hermite (probabilist)"
Line 1: | Line 1: | ||
− | The Hermite polynomials $\{H_n\}_{n=0}^{\infty}$ are a sequence of [[Orthogonal polynomial|orthogonal polynomials]] | + | The Hermite polynomials $\{H_n\}_{n=0}^{\infty}$ are a sequence of [[Orthogonal polynomial|orthogonal polynomials]]. |
− | |||
− | \end{array} | + | $$\begin{array}{ll} |
+ | H_0(x)=1 \\ | ||
+ | H_1(x)=x \\ | ||
+ | H_2(x)=x^2-1\\ | ||
+ | H_3(x)=x^3-3x\\ | ||
+ | H_4(x)=x^4-6x^2+3 \\ | ||
+ | \vdots | ||
+ | \end{array}$$ | ||
=Properties= | =Properties= |
Revision as of 21:32, 25 September 2014
The Hermite polynomials $\{H_n\}_{n=0}^{\infty}$ are a sequence of orthogonal polynomials.
$$\begin{array}{ll} H_0(x)=1 \\ H_1(x)=x \\ H_2(x)=x^2-1\\ H_3(x)=x^3-3x\\ H_4(x)=x^4-6x^2+3 \\ \vdots \end{array}$$
Properties
Theorem: The Hermite polynomials $H_n$ satisfy the Rodrigues' formula $$H_n(t) = (-1)^ne^{x^2}\dfrac{d^n}{dx^n}e^{-x^2}.$$
Proof: █
Theorem: (Generating function) The Hermite polynomials obey $$e^{2tx-t^2} = \displaystyle\sum_{k=0}^{\infty} \dfrac{H_k(x)t^n}{n!}.$$
Proof: █
Theorem: (Orthogonality) The Hermite polynomials obey $$\displaystyle\int_{-\infty}^{\infty} e^{-x^2}H_n(x)H_m(x)dx=\left\{ \begin{array}{ll} 0 &; m \neq n \\ 2^nn!\sqrt{\pi} &; m=n \end{array} \right..$$
Proof: █
Theorem: $H_n(x)$ is an even function for even $n$ and an odd function for odd $n$.
Proof: █