Difference between revisions of "Legendre P"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The Legendre polynomials are defined by the recurrence $$P_n(x) = \dfrac{1}{2^nn!}\dfrac{d^n}{dx^n}(x^2-1)^n; n=0,1,2,\ldots$$ $$\begin{array}{ll} P_0(x) &= 1 \\ P_1(x) &= x \...")
(No difference)

Revision as of 21:05, 4 October 2014

The Legendre polynomials are defined by the recurrence $$P_n(x) = \dfrac{1}{2^nn!}\dfrac{d^n}{dx^n}(x^2-1)^n; n=0,1,2,\ldots$$ $$\begin{array}{ll} P_0(x) &= 1 \\ P_1(x) &= x \\ P_2(x) &= \dfrac{1}{2}(3x^2-1) \\ P_3(x) &= \dfrac{1}{2}(5x^3-3x) \\ \vdots \end{array}$$