Difference between revisions of "Bernoulli B"
From specialfunctionswiki
(Created page with "Bernoulli polynomials $B_n$ are defined by the formula $$\dfrac{te^{xt}}{e^t-1} = \displaystyle\sum_{k=0}^{\infty} \dfrac{B_n(x) t^n}{n!}.$$") |
|||
Line 1: | Line 1: | ||
− | Bernoulli polynomials $B_n$ are defined by the formula | + | Bernoulli polynomials $B_n$ are [[orthogonal polynomials]] defined by the formula |
$$\dfrac{te^{xt}}{e^t-1} = \displaystyle\sum_{k=0}^{\infty} \dfrac{B_n(x) t^n}{n!}.$$ | $$\dfrac{te^{xt}}{e^t-1} = \displaystyle\sum_{k=0}^{\infty} \dfrac{B_n(x) t^n}{n!}.$$ |
Revision as of 20:35, 7 October 2014
Bernoulli polynomials $B_n$ are orthogonal polynomials defined by the formula $$\dfrac{te^{xt}}{e^t-1} = \displaystyle\sum_{k=0}^{\infty} \dfrac{B_n(x) t^n}{n!}.$$