Difference between revisions of "Arcsin"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The $\mathrm{arcsin}$ function is the inverse function of the sine function. <br /> 500px")
 
Line 1: Line 1:
 
The $\mathrm{arcsin}$ function is the inverse function of the [[sine]] function. <br />
 
The $\mathrm{arcsin}$ function is the inverse function of the [[sine]] function. <br />
 
[[File:Arcsin.png|500px]]
 
[[File:Arcsin.png|500px]]
 +
 +
=Properties=
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Proposition:</strong>
 +
$$\dfrac{d}{dz} \mathrm{arcsin(z)} = \dfrac{1}{1-z^2}$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Proposition:</strong>
 +
$$\int \mathrm{arcsin}(z) dz = \sqrt{1-z^2}+z\mathrm{arcsin}(z)+C$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Proposition:</strong>
 +
$$\mathrm{arcsin}(z) = \mathrm{arccsc}\left( \dfrac{1}{z} \right)$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Proposition:</strong>
 +
$$\mathrm{arcsin}(z)=\sum_{k=0}^{\infty} \dfrac{\left(\frac{1}{2} \right)_n}{(2n+1)n!}x^{2n+1}$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
</div>
 +
 +
=References=
 +
*[http://mathworld.wolfram.com/InverseSine.html Inverse sine on Mathworld]

Revision as of 01:25, 19 October 2014

The $\mathrm{arcsin}$ function is the inverse function of the sine function.
500px

Properties

Proposition: $$\dfrac{d}{dz} \mathrm{arcsin(z)} = \dfrac{1}{1-z^2}$$

Proof:

Proposition: $$\int \mathrm{arcsin}(z) dz = \sqrt{1-z^2}+z\mathrm{arcsin}(z)+C$$

Proof:

Proposition: $$\mathrm{arcsin}(z) = \mathrm{arccsc}\left( \dfrac{1}{z} \right)$$

Proof:

Proposition: $$\mathrm{arcsin}(z)=\sum_{k=0}^{\infty} \dfrac{\left(\frac{1}{2} \right)_n}{(2n+1)n!}x^{2n+1}$$

Proof:

References