Difference between revisions of "Arccos"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
Line 27: Line 27:
 
</div>
 
</div>
 
</div>
 
</div>
 +
 +
=References=
 +
[http://mathworld.wolfram.com/InverseCosine.html  Weisstein, Eric W. "Inverse Cosine." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/InverseCosine.html]

Revision as of 01:35, 19 October 2014

The $\mathrm{arccos}$ function is the inverse function of the cosine function.

Arccos.png

Properties

Proposition: $$\dfrac{d}{dz} \mathrm{arccos}(z) = -\dfrac{1}{\sqrt{1-z^2}}$$

Proof:

Proposition: $$\int \mathrm{arccos}(z) dz = z\mathrm{arccos}(z)-\sqrt{1-z^2}+C$$

Proof:

Proposition: $$\mathrm{arccos}(z)=\mathrm{arcsec} \left( \dfrac{1}{z} \right)$$

Proof:

References

Weisstein, Eric W. "Inverse Cosine." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/InverseCosine.html