Difference between revisions of "Arccos"
From specialfunctionswiki
(→Properties) |
|||
Line 27: | Line 27: | ||
</div> | </div> | ||
</div> | </div> | ||
+ | |||
+ | =References= | ||
+ | [http://mathworld.wolfram.com/InverseCosine.html Weisstein, Eric W. "Inverse Cosine." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/InverseCosine.html] |
Revision as of 01:35, 19 October 2014
The $\mathrm{arccos}$ function is the inverse function of the cosine function.
Properties
Proposition: $$\dfrac{d}{dz} \mathrm{arccos}(z) = -\dfrac{1}{\sqrt{1-z^2}}$$
Proof: █
Proposition: $$\int \mathrm{arccos}(z) dz = z\mathrm{arccos}(z)-\sqrt{1-z^2}+C$$
Proof: █
Proposition: $$\mathrm{arccos}(z)=\mathrm{arcsec} \left( \dfrac{1}{z} \right)$$
Proof: █