Difference between revisions of "Dirichlet eta"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "Let $\mathrm{Re} \hspace{2pt} z > 0$, then define $$\eta(z) = \displaystyle\sum_{n=1}^{\infty} \dfrac{(-1)^{n-1}}{n^s}.$$ This series is clearly the Riemann zeta function...")
 
Line 2: Line 2:
 
$$\eta(z) = \displaystyle\sum_{n=1}^{\infty} \dfrac{(-1)^{n-1}}{n^s}.$$
 
$$\eta(z) = \displaystyle\sum_{n=1}^{\infty} \dfrac{(-1)^{n-1}}{n^s}.$$
 
This series is clearly the [[Riemann zeta function]] with alternating terms.
 
This series is clearly the [[Riemann zeta function]] with alternating terms.
 +
 +
[[File:Complex Dirichlet eta function.jpg|500px]]

Revision as of 05:37, 19 October 2014

Let $\mathrm{Re} \hspace{2pt} z > 0$, then define $$\eta(z) = \displaystyle\sum_{n=1}^{\infty} \dfrac{(-1)^{n-1}}{n^s}.$$ This series is clearly the Riemann zeta function with alternating terms.

500px