Difference between revisions of "Lerch zeta function"
From specialfunctionswiki
(Created page with "The Lerch zeta function is defined by $$L(\lambda,\alpha,z) = \displaystyle\sum_{k=0}^{\infty} \dfrac{e^{2i \pi \lambda k}}{(n+\alpha)^z}.$$") |
(No difference)
|
Revision as of 01:28, 21 October 2014
The Lerch zeta function is defined by $$L(\lambda,\alpha,z) = \displaystyle\sum_{k=0}^{\infty} \dfrac{e^{2i \pi \lambda k}}{(n+\alpha)^z}.$$