Difference between revisions of "Arccos"

From specialfunctionswiki
Jump to: navigation, search
Line 11: Line 11:
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>Proposition:</strong>  
 
<strong>Proposition:</strong>  
$$\dfrac{d}{dz} \mathrm{arccos}(z) = -\dfrac{1}{\sqrt{1-z^2}}$$
+
$\dfrac{d}{dz} \mathrm{arccos}(z) = -\dfrac{1}{\sqrt{1-z^2}}$
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> If $\theta=\mathrm{arccos}(z)$ then $\cos(\theta)=z$. Now use [[implicit differentiation]] with respect to $z$ to get
 
<strong>Proof:</strong> If $\theta=\mathrm{arccos}(z)$ then $\cos(\theta)=z$. Now use [[implicit differentiation]] with respect to $z$ to get
Line 24: Line 24:
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>Proposition:</strong>  
 
<strong>Proposition:</strong>  
$$\int \mathrm{arccos}(z) dz = z\mathrm{arccos}(z)-\sqrt{1-z^2}+C$$
+
$\displaystyle\int \mathrm{arccos}(z) dz = z\mathrm{arccos}(z)-\sqrt{1-z^2}+C$
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  
Line 32: Line 32:
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>Proposition:</strong>  
 
<strong>Proposition:</strong>  
$$\mathrm{arccos}(z)=\mathrm{arcsec} \left( \dfrac{1}{z} \right)$$
+
$\mathrm{arccos}(z)=\mathrm{arcsec} \left( \dfrac{1}{z} \right)$
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  

Revision as of 05:58, 31 October 2014

The function $\mathrm{arccos} \colon [-1,1] \longrightarrow [0,\pi]$ is the inverse function of the cosine function.

Properties

Proposition: $\dfrac{d}{dz} \mathrm{arccos}(z) = -\dfrac{1}{\sqrt{1-z^2}}$

Proof: If $\theta=\mathrm{arccos}(z)$ then $\cos(\theta)=z$. Now use implicit differentiation with respect to $z$ to get $$-\sin(\theta)\theta'=1.$$ The following image shows that $\sin(\mathrm{arccos}(z))=\sqrt{1-z^2}$:

Sin(arccos(z)).png

Hence substituting back in $\theta=\mathrm{arccos}(z)$ yields the formula
$$\dfrac{d}{dz} \mathrm{arccos}(z) = -\dfrac{1}{\sin(\mathrm{arccos}(z))} = -\dfrac{1}{\sqrt{1-z^2}}.█$$

Proposition: $\displaystyle\int \mathrm{arccos}(z) dz = z\mathrm{arccos}(z)-\sqrt{1-z^2}+C$

Proof:

Proposition: $\mathrm{arccos}(z)=\mathrm{arcsec} \left( \dfrac{1}{z} \right)$

Proof:

References

Weisstein, Eric W. "Inverse Cosine." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/InverseCosine.html