Difference between revisions of "Cosine"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
The cosine function, $\cos \colon \mathbb{R} \rightarrow \mathbb{R}$ is the unique solution of the second order initial value problem
+
The cosine function, $\cos \colon \mathbb{C} \rightarrow \mathbb{C}$ is defined by the formula
$$y''=-y;y(0)=1,y'(0)=0.$$
+
$$\cos(z)=\dfrac{e^{iz}-e^{-iz}}{2},$$
 +
where $e^z$ is the [[exponential function]].
  
 
<div align="center">
 
<div align="center">

Revision as of 14:01, 1 November 2014

The cosine function, $\cos \colon \mathbb{C} \rightarrow \mathbb{C}$ is defined by the formula $$\cos(z)=\dfrac{e^{iz}-e^{-iz}}{2},$$ where $e^z$ is the exponential function.

Properties

Proposition: $\cos(x) = \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k x^{2k}}{(2k)!}$

Proof:

Proposition: $\cos(x) = \prod_{k=1}^{\infty} \left( 1 - \dfrac{4x^2}{\pi^2 (2k-1)^2} \right)$

Proof: