Difference between revisions of "Binomial coefficient"
From specialfunctionswiki
Line 1: | Line 1: | ||
The binomial coefficients are defined by the formula | The binomial coefficients are defined by the formula | ||
$${}_nC_k:={n \choose k} = \dfrac{n!}{(n-k)!k!}.$$ | $${}_nC_k:={n \choose k} = \dfrac{n!}{(n-k)!k!}.$$ | ||
+ | |||
+ | |||
+ | <div align="center"> | ||
+ | <gallery> | ||
+ | File:Binomialcoefficientfunction.png|Graph of the complex binomial coefficient function. | ||
+ | </gallery> | ||
+ | </div> | ||
=Properties= | =Properties= |
Revision as of 22:36, 13 January 2015
The binomial coefficients are defined by the formula $${}_nC_k:={n \choose k} = \dfrac{n!}{(n-k)!k!}.$$
Properties
Proposition: $\displaystyle{n \choose k} = {n \choose {n-k}} = (-1)^k {{k-n-1} \choose k}$
Proof: █
Proposition: $\displaystyle{{n+1} \choose k} = {n \choose k} + {n \choose {k-1}}$
Proof: █
Proposition: ${n \choose 0} = {n \choose n} = 1$
Proof: █
Proposition: $1 + \displaystyle {n \choose 1} + {n \choose 2} + \ldots + {n \choose n} = 2^n$
Proof: █
Proposition: $1 - \displaystyle {n \choose 1} + {n \choose 2} - \ldots + (-1)^n {n \choose n} =0$
Proof: █
Theorem (Binomial Theorem): $(a+b)^n = \displaystyle\sum_{k=0}^n {n \choose k} a^k b^{n-k}$
Proof: █