Difference between revisions of "Dirichlet eta"
From specialfunctionswiki
m (Tom moved page Dirichlet eta function to Dirichlet eta) |
|
(No difference)
|
Revision as of 08:14, 19 January 2015
Let $\mathrm{Re} \hspace{2pt} z > 0$, then define $$\eta(z) = \displaystyle\sum_{n=1}^{\infty} \dfrac{(-1)^{n-1}}{n^s}.$$ This series is clearly the Riemann zeta function with alternating terms.