|
|
Line 4: |
Line 4: |
| | | |
| [[File:Complex Riemann Xi.jpg|500px]] | | [[File:Complex Riemann Xi.jpg|500px]] |
− |
| |
− | =Properties=
| |
− | <div class="toccolours mw-collapsible mw-collapsed">
| |
− | <strong>Theorem:</strong> The values of $\xi$ are known at even integers:
| |
− | $$\xi(2n) = \dfrac{(-1)^{n+1}}{(2n)!}B_{2n}2^{2n-1}\pi^n (2n^2-n)(n-1)!,$$
| |
− | where $B_n$ is the $n$th [[Bernoulli number]].
| |
− | <div class="mw-collapsible-content">
| |
− | <strong>Proof:</strong> █
| |
− | </div>
| |
− | </div>
| |
− |
| |
− | <div class="toccolours mw-collapsible mw-collapsed">
| |
− | <strong>Theorem:</strong> The following series expansion holds:
| |
− | $$\dfrac{d}{dz} \log \xi\left( \dfrac{-z}{1-z} \right) = \displaystyle\sum_{k=0}^{\infty} \lambda_{k+1}z^k,$$
| |
− | where
| |
− | $$\lambda_k = \dfrac{1}{(n-1)!} \dfrac{d^k}{ds^k} \left[ s^{k-1} \log \xi(s) \right] \Bigg|_{s=1} = \displaystyle\sum_{\rho} \left[ 1 - \left(1 - \dfrac{1}{\rho} \right)^n \right],$$
| |
− | where this sum is over $\rho$, the non-trivial zeros of the [[Riemann zeta function]].
| |
− | <div class="mw-collapsible-content">
| |
− | <strong>Proof:</strong> █
| |
− | </div>
| |
− | </div>
| |
Revision as of 20:33, 19 February 2015
The Riemann $\xi$ function is defined by the formula
$$\xi(z)=\dfrac{z}{2}(z-1)\pi^{-\frac{z}{2}}\Gamma\left(\dfrac{z}{2}\right)\zeta(z),$$
where $\Gamma$ denotes the gamma function and $\zeta$ denotes the Riemann zeta function.