Difference between revisions of "Secant zeta function"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
$$\psi_s(z) = \displaystyle\sum_{n=1}^{\infty} \dfrac{\sec(\pi n z)}{n^s}$$
 
$$\psi_s(z) = \displaystyle\sum_{n=1}^{\infty} \dfrac{\sec(\pi n z)}{n^s}$$
 +
 +
=Properties=
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> The series $\psi_s(z)$ converges absolutely in the following cases:
 +
# when $z=\dfrac{p}{q}$ with $q$ odd, $s>1$
 +
# when $z$ [[algebraic number| algebraic]] [[irrational number]] and $s >2$
 +
# when $z$ is algebraic irrational and $s=2$.
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> Let $z$ be irrational, $k \geq \dfrac{1}{2}$, and $\dfrac{p}{q}$ be a rational approximation to $z$ in reduced form for which
 +
$$\left| z - \dfrac{p}{q} \right|< \dfrac{k}{q^2}.$$
 +
Then either $\dfrac{p}{q}$ is a [[convergent]] $\dfrac{p_{\ell}}{q_{\ell}}$ to $z$, or
 +
$$\dfrac{p}{q} = \dfrac{ap_{\ell}+bp_{\ell-1}}{aq_{\ell}+bq_{\ell-1}}; |a|,|b|<2k,$$
 +
where $a$ and $b$ are integers.
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
  
 
=References=
 
=References=
 
[http://arxiv.org/pdf/1304.3922.pdf Secant zeta functions]
 
[http://arxiv.org/pdf/1304.3922.pdf Secant zeta functions]

Revision as of 01:49, 6 March 2015

$$\psi_s(z) = \displaystyle\sum_{n=1}^{\infty} \dfrac{\sec(\pi n z)}{n^s}$$

Properties

Theorem: The series $\psi_s(z)$ converges absolutely in the following cases:

  1. when $z=\dfrac{p}{q}$ with $q$ odd, $s>1$
  2. when $z$ algebraic irrational number and $s >2$
  3. when $z$ is algebraic irrational and $s=2$.

Proof:

Theorem: Let $z$ be irrational, $k \geq \dfrac{1}{2}$, and $\dfrac{p}{q}$ be a rational approximation to $z$ in reduced form for which $$\left| z - \dfrac{p}{q} \right|< \dfrac{k}{q^2}.$$ Then either $\dfrac{p}{q}$ is a convergent $\dfrac{p_{\ell}}{q_{\ell}}$ to $z$, or $$\dfrac{p}{q} = \dfrac{ap_{\ell}+bp_{\ell-1}}{aq_{\ell}+bq_{\ell-1}}; |a|,|b|<2k,$$ where $a$ and $b$ are integers.

Proof:


References

Secant zeta functions