Difference between revisions of "Jacobi dn"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "Let $u=\displaystyle\int_0^x \dfrac{1}{\sqrt{(1-t^2)(1-mt^2)}}dt = \displaystyle\int_0^{\phi} \dfrac{1}{\sqrt{1-m\sin^2 \theta}} d\theta.$ Then we define $$\mathrm{dn \hspace{...")
 
Line 1: Line 1:
 
Let $u=\displaystyle\int_0^x \dfrac{1}{\sqrt{(1-t^2)(1-mt^2)}}dt = \displaystyle\int_0^{\phi} \dfrac{1}{\sqrt{1-m\sin^2 \theta}} d\theta.$ Then we define
 
Let $u=\displaystyle\int_0^x \dfrac{1}{\sqrt{(1-t^2)(1-mt^2)}}dt = \displaystyle\int_0^{\phi} \dfrac{1}{\sqrt{1-m\sin^2 \theta}} d\theta.$ Then we define
 
$$\mathrm{dn \hspace{2pt}} u = \sqrt{1-m\sin^2 \phi} = \sqrt{1-mx^2}.$$
 
$$\mathrm{dn \hspace{2pt}} u = \sqrt{1-m\sin^2 \phi} = \sqrt{1-mx^2}.$$
 +
 +
=Properties=
 +
#$m \mathrm{sn \hspace{2pt}}^2 u + \mathrm{dn \hspace{2pt}}^2u=1$

Revision as of 07:28, 10 March 2015

Let $u=\displaystyle\int_0^x \dfrac{1}{\sqrt{(1-t^2)(1-mt^2)}}dt = \displaystyle\int_0^{\phi} \dfrac{1}{\sqrt{1-m\sin^2 \theta}} d\theta.$ Then we define $$\mathrm{dn \hspace{2pt}} u = \sqrt{1-m\sin^2 \phi} = \sqrt{1-mx^2}.$$

Properties

  1. $m \mathrm{sn \hspace{2pt}}^2 u + \mathrm{dn \hspace{2pt}}^2u=1$