Difference between revisions of "Jacobi cn"
From specialfunctionswiki
(→Properties) |
|||
Line 4: | Line 4: | ||
=Properties= | =Properties= | ||
#$\mathrm{sn \hspace{2pt}}^2u+\mathrm{cn \hspace{2pt}}^2u=1$ | #$\mathrm{sn \hspace{2pt}}^2u+\mathrm{cn \hspace{2pt}}^2u=1$ | ||
+ | #$\mathrm{cn \hspace{2pt}}(0)=1$ |
Revision as of 07:29, 10 March 2015
Let $u=\displaystyle\int_0^x \dfrac{1}{\sqrt{(1-t^2)(1-mt^2)}}dt = \displaystyle\int_0^{\phi} \dfrac{1}{\sqrt{1-m\sin^2 \theta}} d\theta.$ Then we define $$\mathrm{cn \hspace{2pt}} u = \cos \phi = \sqrt{1-x^2}.$$
Properties
- $\mathrm{sn \hspace{2pt}}^2u+\mathrm{cn \hspace{2pt}}^2u=1$
- $\mathrm{cn \hspace{2pt}}(0)=1$