Difference between revisions of "Jacobi sn"
From specialfunctionswiki
(→Properties) |
|||
Line 7: | Line 7: | ||
#$m \mathrm{sn \hspace{2pt}}^2 u + \mathrm{dn \hspace{2pt}}^2u=1$ | #$m \mathrm{sn \hspace{2pt}}^2 u + \mathrm{dn \hspace{2pt}}^2u=1$ | ||
#$\mathrm{sn \hspace{2pt}}$ is an odd function | #$\mathrm{sn \hspace{2pt}}$ is an odd function | ||
+ | #$\dfrac{d}{du}\mathrm{sn \hspace{2pt}} u =\mathrm{cn \hspace{2pt}}(u)\mathrm{dn \hspace{2pt}}(u)$ |
Revision as of 07:31, 10 March 2015
Let $u=\displaystyle\int_0^x \dfrac{1}{\sqrt{(1-t^2)(1-mt^2)}}dt = \displaystyle\int_0^{\phi} \dfrac{1}{\sqrt{1-m\sin^2 \theta}} d\theta.$ Then we define $$\mathrm{sn \hspace{2pt}}u = \sin \phi = x.$$
Properties
- $\mathrm{sn \hspace{2pt}}^2u+\mathrm{cn \hspace{2pt}}^2u=1$
- $\mathrm{sn \hspace{2pt}}(0)=0$
- $m \mathrm{sn \hspace{2pt}}^2 u + \mathrm{dn \hspace{2pt}}^2u=1$
- $\mathrm{sn \hspace{2pt}}$ is an odd function
- $\dfrac{d}{du}\mathrm{sn \hspace{2pt}} u =\mathrm{cn \hspace{2pt}}(u)\mathrm{dn \hspace{2pt}}(u)$