Difference between revisions of "Weierstrass factorization of cosine"
From specialfunctionswiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Proposition:</strong> $\cos(x) = \displaystyle\prod_{k=1}^{\infty} \left( 1 - \dfrac{4x^2}{\pi^2 (2k-1)^2} \right)...") |
|||
Line 1: | Line 1: | ||
<div class="toccolours mw-collapsible mw-collapsed"> | <div class="toccolours mw-collapsible mw-collapsed"> | ||
− | <strong>Proposition:</strong> $\cos(x) = \displaystyle\prod_{k=1}^{\infty} \left( 1 - \dfrac{4x^2}{\pi^2 (2k-1)^2} \right)$ | + | <strong>[[Weierstrass factorization of cosine|Proposition]]:</strong> The [[Weierstrass factorization]] of [[Cosine|$\cos(x)$]] is |
+ | $$\cos(x) = \displaystyle\prod_{k=1}^{\infty} \left( 1 - \dfrac{4x^2}{\pi^2 (2k-1)^2} \right).$$ | ||
<div class="mw-collapsible-content"> | <div class="mw-collapsible-content"> | ||
<strong>Proof:</strong> █ | <strong>Proof:</strong> █ | ||
</div> | </div> | ||
</div> | </div> |
Revision as of 05:02, 20 March 2015
Proposition: The Weierstrass factorization of $\cos(x)$ is $$\cos(x) = \displaystyle\prod_{k=1}^{\infty} \left( 1 - \dfrac{4x^2}{\pi^2 (2k-1)^2} \right).$$
Proof: █